Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2311834, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573961

RESUMO

Phase separation of biomolecules into condensates is a key mechanism in the spatiotemporal organization of biochemical processes in cells. However, the impact of the material properties of biomolecular condensates on important processes, such as the control of gene expression, remains largely elusive. Here, the material properties of optogenetically induced transcription factor condensates are systematically tuned, and probed for their impact on the activation of target promoters. It is demonstrated that transcription factors in rather liquid condensates correlate with increased gene expression levels, whereas stiffer transcription factor condensates correlate with the opposite effect, reduced activation of gene expression. The broad nature of these findings is demonstrated in mammalian cells and mice, as well as by using different synthetic and natural transcription factors. These effects are observed for both transgenic and cell-endogenous promoters. The findings provide a novel materials-based layer in the control of gene expression, which opens novel opportunities in optogenetic engineering and synthetic biology.

2.
Eur J Immunol ; 54(3): e2350693, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38279603

RESUMO

Natural killer (NK) cells play a vital role in eliminating tumorigenic cells. Efficient locating and killing of target cells in complex three-dimensional (3D) environments are critical for their functions under physiological conditions. However, the role of mechanosensing in regulating NK-cell killing efficiency in physiologically relevant scenarios is poorly understood. Here, we report that the responsiveness of NK cells is regulated by tumor cell stiffness. NK-cell killing efficiency in 3D is impaired against softened tumor cells, whereas it is enhanced against stiffened tumor cells. Notably, the durations required for NK-cell killing and detachment are significantly shortened for stiffened tumor cells. Furthermore, we have identified PIEZO1 as the predominantly expressed mechanosensitive ion channel among the examined candidates in NK cells. Perturbation of PIEZO1 abolishes stiffness-dependent NK-cell responsiveness, significantly impairs the killing efficiency of NK cells in 3D, and substantially reduces NK-cell infiltration into 3D collagen matrices. Conversely, PIEZO1 activation enhances NK killing efficiency as well as infiltration. In conclusion, our findings demonstrate that PIEZO1-mediated mechanosensing is crucial for NK killing functions, highlighting the role of mechanosensing in NK-cell killing efficiency under 3D physiological conditions and the influence of environmental physical cues on NK-cell functions.


Assuntos
Células Matadoras Naturais , Células Matadoras Naturais/fisiologia , Morte Celular
3.
Curr Opin Cell Biol ; 85: 102265, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866018

RESUMO

Vimentin, an intracellular cytoskeletal protein, can be secreted by various cells in response to conditions such as injury, stress, senescence, and cancer. Once vimentin is secreted outside of the cell, it is called extracellular vimentin. This extracellular vimentin is significantly involved in pathological conditions, particularly in the areas of viral infection, cancer, immune response, and wound healing. The effects of extracellular vimentin can be either positive or negative, for example it can enhance axonal repair but also mediates SARS-CoV-2 infection. In this review, we categorize the functional implications of extracellular vimentin based on its localization outside the cell. Specifically, we classify extracellular vimentin into two distinct forms: surface vimentin, which remains bound to the cell surface, and secreted vimentin, which refers to the free form that is completely released outside the cell. Overall, extracellular vimentin has a dual nature that encompasses both beneficial and detrimental effects on the functionality of cells, organs and whole organisms. Here, we summarize its effects in viral infection, cancer, immune response and wound healing. We find that surface vimentin is often associated with negative consequences, whereas secreted vimentin manifests predominantly with positive influences. We found that the observed effects of extracellular vimentin strongly depend on the specific circumstances under which its expression occurs in cells.


Assuntos
Vimentina , Humanos , Axônios/metabolismo , Filamentos Intermediários/metabolismo , Neoplasias , Vimentina/metabolismo , Viroses , Cicatrização , Animais
4.
Gut ; 72(11): 2081-2094, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37541770

RESUMO

IL-3 has been reported to be involved in various inflammatory disorders, but its role in inflammatory bowel disease (IBD) has not been addressed so far. Here, we determined IL-3 expression in samples from patients with IBD and studied the impact of Il3 or Il3r deficiency on T cell-dependent experimental colitis. We explored the mechanical, cytoskeletal and migratory properties of Il3r -/- and Il3r +/+ T cells using real-time deformability cytometry, atomic force microscopy, scanning electron microscopy, fluorescence recovery after photobleaching and in vitro and in vivo cell trafficking assays. We observed that, in patients with IBD, the levels of IL-3 in the inflamed mucosa were increased. In vivo, experimental chronic colitis on T cell transfer was exacerbated in the absence of Il-3 or Il-3r signalling. This was attributable to Il-3r signalling-induced changes in kinase phosphorylation and actin cytoskeleton structure, resulting in increased mechanical deformability and enhanced egress of Tregs from the inflamed colon mucosa. Similarly, IL-3 controlled mechanobiology in human Tregs and was associated with increased mucosal Treg abundance in patients with IBD. Collectively, our data reveal that IL-3 signaling exerts an important regulatory role at the interface of biophysical and migratory T cell features in intestinal inflammation and suggest that this might be an interesting target for future intervention.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Linfócitos T Reguladores , Receptores de Interleucina-3/metabolismo , Interleucina-3/metabolismo , Inflamação/metabolismo , Colite/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo
5.
MethodsX ; 10: 102240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305805

RESUMO

The cellular microenvironment contributes to the architecture, differentiation, polarity, mechanics and functions of the cell [1]. Spatial confinement of cells using micropatterning techniques allows to alter and regulate the cellular microenvironment for a better understanding of cellular mechanisms [2]. However, commercially available micropatterned consumables such as coverslips, dishes, plates etc. are expensive. These methods are complex and based on deep UV patterning [3,4]. In this study, we establish a low-cost method for effective micropatterning using Polydimethylsiloxane (PDMS) chips.•We demonstrate this method by generating fibronectin-coated micropatterned lines (width, 5 µm) on a glass bottom dish.•As a proof of concept, we culture macrophages on these lines. We additionally show that this method allows to determine the cellular polarity by measuring the position of the nucleus within a cell on a micropatterned line.

6.
Biophys J ; 121(23): 4615-4623, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36303426

RESUMO

Migrating cells often encounter a wide variety of topographic features-including the presence of obstacles-when navigating through crowded biological environments. Unraveling the impact of topography and crowding on the dynamics of cells is key to better understand many essential physiological processes such as the immune response. We study the impact of geometrical cues on ameboid migration of HL-60 cells differentiated into neutrophils. A microfluidic device is designed to track the cells in confining geometries between two parallel plates with distance h, in which identical micropillars are arranged in regular pillar forests with pillar spacing e. We observe that the cells are temporarily captured near pillars, with a mean contact time that is independent of h and e. By decreasing the vertical confinement h, we find that the cell velocity is not affected, while the persistence reduces; thus, cells are able to preserve their velocity when highly squeezed but lose the ability to control their direction of motion. At a given h, we show that by decreasing the pillar spacing e in the weak lateral confinement regime, the mean escape time of cells from effective local traps between neighboring pillars grows. This effect, together with the increase of cell-pillar contact frequency, leads to the reduction of diffusion constant D. By disentangling the contributions of these two effects on D in numerical simulations, we verify that the impact of cell-pillar contacts on cell diffusivity is more pronounced at smaller pillar spacing.


Assuntos
Movimento Celular , Humanos
7.
Biophys J ; 121(21): 4099-4108, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181271

RESUMO

Migrating cells exhibit various motility patterns, resulting from different migration mechanisms, cell properties, or cell-environment interactions. The complexity of cell dynamics is reflected, e.g., in the diversity of the observed forms of velocity autocorrelation function-which has been widely served as a measure of diffusivity and spreading. By analyzing the dynamics of migrating dendritic cells in vitro, we disentangle the contributions of direction θ and speed v to the velocity autocorrelation. We find that the ability of cells to maintain their speed or direction of motion is unequal, reflected in different temporal decays of speed and direction autocorrelation functions, ACv(t)∼t-1.2 and ACθ(t)∼t-0.5, respectively. The larger power-law exponent of ACv(t) indicates that the cells lose their speed memory considerably faster than the direction memory. Using numerical simulations, we investigate the influence of ACθ and ACv as well as the direction-speed cross correlation Cθ-v on the search time of a persistent random walker to find a randomly located target in confinement. Although ACθ and Cθ-v play the major roles, we find that the speed autocorrelation ACv can be also tuned to minimize the search time. Adopting an optimal ACv can reduce the search time even up to 10% compared with uncorrelated spontaneous speeds. Our results suggest that migrating cells can improve their search efficiency, especially in crowded environments, through the directional or speed persistence or the speed-direction correlation.


Assuntos
Células Dendríticas , Movimento (Física)
8.
Biophys J ; 121(20): 3950-3961, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36056556

RESUMO

Dendritic cells use amoeboid migration to pass through narrow passages in the extracellular matrix and confined tissue in search for pathogens and to reach the lymph nodes and alert the immune system. Amoeboid migration is a migration mode that, instead of relying on cell adhesion, is based on mechanical resilience and friction. To better understand the role of intermediate filaments in ameboid migration, we studied the effects of vimentin on the migration of dendritic cells. We show that the lymph node homing of vimentin-deficient cells is reduced in our in vivo experiments in mice. Lack of vimentin also reduces the cell stiffness, the number of migrating cells, and the migration speed in vitro in both 1D and 2D confined environments. Moreover, we find that lack of vimentin weakens the correlation between directional persistence and migration speed. Thus, vimentin-expressing dendritic cells move faster in straighter lines. Our numerical simulations of persistent random search in confined geometries verify that the reduced migration speed and the weaker correlation between the speed and direction of motion result in longer search times to find regularly located targets. Together, these observations show that vimentin enhances the ameboid migration of dendritic cells, which is relevant for the efficiency of their random search for pathogens.


Assuntos
Amoeba , Filamentos Intermediários , Camundongos , Animais , Filamentos Intermediários/metabolismo , Vimentina , Movimento Celular , Adesão Celular , Células Dendríticas/metabolismo
9.
PLoS Biol ; 20(9): e3001737, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36099296

RESUMO

The nutrient-activated mTORC1 (mechanistic target of rapamycin kinase complex 1) signaling pathway determines cell size by controlling mRNA translation, ribosome biogenesis, protein synthesis, and autophagy. Here, we show that vimentin, a cytoskeletal intermediate filament protein that we have known to be important for wound healing and cancer progression, determines cell size through mTORC1 signaling, an effect that is also manifested at the organism level in mice. This vimentin-mediated regulation is manifested at all levels of mTOR downstream target activation and protein synthesis. We found that vimentin maintains normal cell size by supporting mTORC1 translocation and activation by regulating the activity of amino acid sensing Rag GTPase. We also show that vimentin inhibits the autophagic flux in the absence of growth factors and/or critical nutrients, demonstrating growth factor-independent inhibition of autophagy at the level of mTORC1. Our findings establish that vimentin couples cell size and autophagy through modulating Rag GTPase activity of the mTORC1 signaling pathway.


Assuntos
Filamentos Intermediários , Complexos Multiproteicos , Animais , Autofagia/fisiologia , Tamanho Celular , GTP Fosfo-Hidrolases/metabolismo , Filamentos Intermediários/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Vimentina/metabolismo
10.
Front Cell Dev Biol ; 10: 891281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923851

RESUMO

Macrophages have a vital role in the immune system through elimination of cell debris and microorganisms by phagocytosis. The activation of macrophages by tumour necrosis factor-α induces expression of extracellular cell-surface vimentin and promotes release of this vimentin into the extracellular environment. Vimentin is a cytoskeletal protein that is primarily located in the cytoplasm of cells. However, under circumstances like injury, stress, senescence and activation, vimentin can be expressed on the extracellular cell surface, or it can be released into the extracellular space. The characteristics of this extracellular vimentin, and its implications for the functional role of macrophages and the mechanism of secretion remain unclear. Here, we demonstrate that vimentin is released mainly from the back of macrophage-like cells. This polarisation is strongly enhanced upon macrophage activation. One-dimensional patterned lines showed that extracellular cell-surface vimentin is localised primarily at the back of activated macrophage-like cells. Through two-dimensional migration and phagocytosis assays, we show that this extracellular vimentin enhances migration and phagocytosis of macrophage-like cells. We further show that this extracellular vimentin forms agglomerates on the cell surface, in contrast to its intracellular filamentous form, and that it is released into the extracellular space in the form of small fragments. Taken together, we provide new insights into the release of extracellular cell-surface vimentin and its implications for macrophage functionality.

11.
Front Cell Dev Biol ; 10: 931880, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035985

RESUMO

Actin is a cytoskeletal filament involved in numerous biological tasks, such as providing cells a shape or generating and transmitting forces. Particularly important for these tasks is the ability of actin to grow and shrink. To study the role of actin in living cells this dynamic needs to be targeted. In the past, such alterations were performed by destabilizing actin. In contrast, we used the natural compound miuraenamide A in living retinal pigmented epithelial (RPE-1) cells to stabilize actin filaments and show that it decreases actin filament dynamics and elongates filament length. Cells treated with miuraenamide A increased their adhesive area and express more focal adhesion sites. These alterations result in a lower migration speed as well as a shift of nuclear position. We therefore postulate that miuraenamide A is a promising new tool to stabilize actin polymerization and study cellular behavior such as migration.

12.
Int J Mol Sci ; 23(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35216078

RESUMO

Metastasising cells express the intermediate filament protein vimentin, which is used to diagnose invasive tumours in the clinic. We aimed to clarify how vimentin regulates the motility of metastasising fibroblasts. STED super-resolution microscopy, live-cell imaging and quantitative proteomics revealed that oncogene-expressing and metastasising fibroblasts show a less-elongated cell shape, reduced cell spreading, increased cell migration speed, reduced directionality, and stronger coupling between these migration parameters compared to normal control cells. In total, we identified and compared 555 proteins in the vimentin interactome. In metastasising cells, the levels of keratin 18 and Rab5C were increased, while those of actin and collagen were decreased. Inhibition of HDAC6 reversed the shape, spreading and migration phenotypes of metastasising cells back to normal. Inhibition of HDAC6 also decreased the levels of talin 1, tropomyosin, Rab GDI ß, collagen and emilin 1 in the vimentin interactome, and partially reversed the nanoscale vimentin organisation in oncogene-expressing cells. These findings describe the changes in the vimentin interactome and nanoscale distribution that accompany the defective cell shape, spreading and migration of metastasising cells. These results support the hypothesis that oncogenes can act through HDAC6 to regulate the vimentin binding of the cytoskeletal and cell-extracellular matrix adhesion components that contribute to the defective motility of metastasising cells.


Assuntos
Movimento Celular/fisiologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Vimentina/metabolismo , Actinas/metabolismo , Animais , Adesão Celular/fisiologia , Forma Celular/fisiologia , Junções Célula-Matriz/metabolismo , Células Cultivadas , Colágeno/metabolismo , Citoesqueleto/metabolismo , Desacetilase 6 de Histona/metabolismo , Humanos , Camundongos , Oncogenes/fisiologia
13.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299089

RESUMO

The cytoskeletal protein vimentin is secreted under various physiological conditions. Extracellular vimentin exists primarily in two forms: attached to the outer cell surface and secreted into the extracellular space. While surface vimentin is involved in processes such as viral infections and cancer progression, secreted vimentin modulates inflammation through reduction of neutrophil infiltration, promotes bacterial elimination in activated macrophages, and supports axonal growth in astrocytes through activation of the IGF-1 receptor. This receptor is overexpressed in cancer cells, and its activation pathway has significant roles in general cellular functions. In this study, we investigated the functional role of extracellular vimentin in non-tumorigenic (MCF-10a) and cancer (MCF-7) cells through the evaluation of its effects on cell migration, proliferation, adhesion, and monolayer permeability. Upon treatment with extracellular recombinant vimentin, MCF-7 cells showed increased migration, proliferation, and adhesion, compared to MCF-10a cells. Further, MCF-7 monolayers showed reduced permeability, compared to MCF-10a monolayers. It has been shown that the receptor binding domain of SARS-CoV-2 spike protein can alter blood-brain barrier integrity. Surface vimentin also acts as a co-receptor between the SARS-CoV-2 spike protein and the cell-surface angiotensin-converting enzyme 2 receptor. Therefore, we also investigated the permeability of MCF-10a and MCF-7 monolayers upon treatment with extracellular recombinant vimentin, and its modulation of the SARS-CoV-2 receptor binding domain. These findings show that binding of extracellular recombinant vimentin to the cell surface enhances the permeability of both MCF-10a and MCF-7 monolayers. However, with SARS-CoV-2 receptor binding domain addition, this effect is lost with MCF-7 monolayers, as the extracellular vimentin binds directly to the viral domain. This defines an influence of extracellular vimentin in SARS-CoV-2 infections.


Assuntos
Neoplasias da Mama/patologia , Mama/patologia , Permeabilidade da Membrana Celular , Matriz Extracelular/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Vimentina/metabolismo , Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Células Cultivadas , Feminino , Humanos , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/genética , Vimentina/genética
14.
PLoS One ; 16(7): e0254165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234360

RESUMO

The cellular cortex is an approximately 200-nm-thick actin network that lies just beneath the cell membrane. It is responsible for the mechanical properties of cells, and as such, it is involved in many cellular processes, including cell migration and cellular interactions with the environment. To develop a clear view of this dense structure, high-resolution imaging is essential. As one such technique, electron microscopy, involves complex sample preparation procedures. The final drying of these samples has significant influence on potential artifacts, like cell shrinkage and the formation of artifactual holes in the actin cortex. In this study, we compared the three most used final sample drying procedures: critical-point drying (CPD), CPD with lens tissue (CPD-LT), and hexamethyldisilazane drying. We show that both hexamethyldisilazane and CPD-LT lead to fewer artifactual mesh holes within the actin cortex than CPD. Moreover, CPD-LT leads to significant reduction in cell height compared to hexamethyldisilazane and CPD. We conclude that the final drying procedure should be chosen according to the reduction in cell height, and so CPD-LT, or according to the spatial separation of the single layers of the actin cortex, and so hexamethyldisilazane.


Assuntos
Actinas/química , Liofilização/métodos , Microscopia Eletrônica de Varredura/métodos , Compostos de Organossilício/química , Artefatos , Células Cultivadas , Dessecação/métodos , Humanos , Manejo de Espécimes/métodos
15.
Biophys Rev ; 13(2): 185-202, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34290841

RESUMO

The immune system provides our defense against pathogens and aberrant cells, including tumorigenic and infected cells. Motility is one of the fundamental characteristics that enable immune cells to find invading pathogens, control tissue damage, and eliminate primary developing tumors, even in the absence of external treatments. These processes are termed "immune surveillance." Migration disorders of immune cells are related to autoimmune diseases, chronic inflammation, and tumor evasion. It is therefore essential to characterize immune cell motility in different physiologically and pathologically relevant scenarios to understand the regulatory mechanisms of functionality of immune responses. This review is focused on immune cell migration, to define the underlying mechanisms and the corresponding investigative approaches. We highlight the challenges that immune cells encounter in vivo, and the microfabrication methods to mimic particular aspects of their microenvironment. We discuss the advantages and disadvantages of the proposed tools, and provide information on how to access them. Furthermore, we summarize the directional cues that regulate individual immune cell migration, and discuss the behavior of immune cells in a complex environment composed of multiple directional cues.

16.
FASEB J ; 35(5): e21582, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33835502

RESUMO

The rapid development of advanced microscopy techniques over recent decades has significantly increased the quality of imaging and our understanding of subcellular structures, such as the organization of the filaments of the cytoskeleton using fluorescence and electron microscopy. However, these recent improvements in imaging techniques have not been matched by similar development of techniques for computational analysis of the images of filament networks that can now be obtained. Hence, for a wide range of applications, reliable computational analysis of such two-dimensional methods remains challenging. Here, we present a new algorithm for tracing of filament networks. This software can extract many important parameters from grayscale images of filament networks, including the mesh hole size, and filament length and connectivity (also known as Coordination Number). In addition, the method allows sub-networks to be distinguished in two-dimensional images using intensity thresholding. We show that the algorithm can be used to analyze images of cytoskeleton networks obtained using different advanced microscopy methods. We have thus developed a new improved method for computational analysis of two-dimensional images of filamentous networks that has wide applications for existing imaging techniques. The algorithm is available as open-source software.


Assuntos
Citoesqueleto de Actina/metabolismo , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Microscopia Eletrônica de Varredura/métodos , Microtúbulos/metabolismo , Pseudópodes/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Células Cultivadas , Humanos , Microtúbulos/ultraestrutura , Pseudópodes/ultraestrutura , Epitélio Pigmentado da Retina/ultraestrutura
17.
Phys Rev Lett ; 125(6): 068101, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32845697

RESUMO

Shape, dynamics, and viscoelastic properties of eukaryotic cells are primarily governed by a thin, reversibly cross-linked actomyosin cortex located directly beneath the plasma membrane. We obtain time-dependent rheological responses of fibroblasts and MDCK II cells from deformation-relaxation curves using an atomic force microscope to access the dependence of cortex fluidity on prestress. We introduce a viscoelastic model that treats the cell as a composite shell and assumes that relaxation of the cortex follows a power law giving access to cortical prestress, area-compressibility modulus, and the power law exponent (fluidity). Cortex fluidity is modulated by interfering with myosin activity. We find that the power law exponent of the cell cortex decreases with increasing intrinsic prestress and area-compressibility modulus, in accordance with previous finding for isolated actin networks subject to external stress. Extrapolation to zero tension returns the theoretically predicted power law exponent for transiently cross-linked polymer networks. In contrast to the widely used Hertzian mechanics, our model provides viscoelastic parameters independent of indenter geometry and compression velocity.


Assuntos
Actinas/química , Fibroblastos/química , Fibroblastos/citologia , Modelos Biológicos , Actinas/fisiologia , Animais , Fenômenos Biomecânicos , Linhagem Celular , Membrana Celular/química , Membrana Celular/fisiologia , Força Compressiva , Cães , Elasticidade , Microscopia de Força Atômica , Miosinas/química , Miosinas/fisiologia , Reologia/métodos , Viscosidade
18.
Front Cell Dev Biol ; 8: 521, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714928

RESUMO

Epidermal growth factor receptor 2 (ErbB2) is found overexpressed in several cancers, such as gastric, and breast cancer, and is, therefore, an important therapeutic target. ErbB2 plays a central role in cancer cell invasiveness, and is associated with cytoskeletal reorganization. In order to study the spatial correlation of single ErbB2 proteins and actin filaments, we applied correlative fluorescence microscopy (FM), and scanning transmission electron microscopy (STEM) to image specifically labeled SKBR3 breast cancer cells. The breast cancer cells were grown on microchips, transformed to express an actin-green fluorescent protein (GFP) fusion protein, and labeled with quantum dot (QD) nanoparticles attached to specific anti-ErbB2 Affibodies. FM was performed to identify cellular regions with spatially correlated actin and ErbB2 expression. For STEM of the intact plasma membrane of whole cells, the cells were fixed and covered with graphene. Spatial distribution patterns of ErbB2 in the actin rich ruffled membrane regions were examined, and compared to adjacent actin-low regions of the same cell, revealing an association of putative signaling active ErbB2 homodimers with actin-rich regions. ErbB2 homodimers were found absent from actin-low membrane regions, as well as after treatment of cells with Cytochalasin D, which breaks up larger actin filaments. In both latter data sets, a significant inter-label distance of 36 nm was identified, possibly indicating an indirect attachment to helical actin filaments via the formation of heterodimers of ErbB2 with epidermal growth factor receptor (EGFR). The possible attachment to actin filaments was further explored by identifying linear QD-chains in actin-rich regions, which also showed an inter-label distance of 36 nm.

19.
Phys Rev Lett ; 125(26): 268102, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449749

RESUMO

Migration of immune cells within the human body allows them to fulfill their main function of detecting pathogens. We present experimental evidence showing the optimality of the search strategy of these cells, which is of crucial importance to achieve an efficient immune response. We find that the speed and directional persistence of migrating dendritic cells in our in vitro experiments are highly correlated, which enables them to reduce their search time. We introduce theoretically a new class of random search optimization problems by minimizing the mean first-passage time (MFPT) with respect to the strength of the coupling between influential parameters. We derive an analytical expression for the MFPT in a confined geometry and verify that the correlated motion enhances the search efficiency if the mean persistence length is sufficiently shorter than the confinement size. Our correlated search optimization approach provides an efficient searching recipe and predictive power in a broad range of correlated stochastic processes.


Assuntos
Movimento Celular/imunologia , Células Dendríticas/imunologia , Modelos Imunológicos , Animais , Simulação por Computador , Células Dendríticas/citologia , Camundongos , Processos Estocásticos
20.
Proc Natl Acad Sci U S A ; 117(2): 826-835, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31882452

RESUMO

Dendritic cells "patrol" the human body to detect pathogens. In their search, dendritic cells perform a random walk by amoeboid migration. The efficiency of pathogen detection depends on the properties of the random walk. It is not known how the dendritic cells control these properties. Here, we quantify dendritic cell migration under well-defined 2-dimensional confinement and in a 3-dimensional collagen matrix through recording their long-term trajectories. We find 2 different migration states: persistent migration, during which the dendritic cells move along curved paths, and diffusive migration, which is characterized by successive sharp turns. These states exhibit differences in the actin distributions. Our theoretical and experimental analyses indicate that this kind of motion can be generated by spontaneous actin polymerization waves that contribute to dendritic cell polarization and migration. The relative distributions of persistent and diffusive migration can be changed by modification of the molecular actin filament nucleation and assembly rates. Thus, dendritic cells can control their migration patterns and adapt to specific environments. Our study offers an additional perspective on how dendritic cells tune their searches for pathogens.


Assuntos
Actinas/metabolismo , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Sinais (Psicologia) , Células Dendríticas/fisiologia , Actinas/ultraestrutura , Medula Óssea , Membrana Celular , Forma Celular , Colágeno , Células Dendríticas/citologia , Géis , Humanos , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...